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The presented work introduces a new model of folding kinetics of random heteropolymers, which is based on
the free volume concept. This model reproduces the well-known saddlelike temperature dependence of folding
time. The presented model is discussed in comparison to the random energy model which is widely employed
for describing kinetics of this type and in relation to Levinthal’s paradox.

I. Introduction

Folding is a process of considerable interest which is
important for many scientific and practical reasons.1 This process
is intensively discussed in scientific literature in relation to
experimental2-5 investigations and theoretical modeling.6-13 In
this regard, perhaps the most important quantity which describes
the folding process is the reaction ratekf or the corresponding
folding time τf ) 1/kf. At lower temperatures, similar to the
vast majority of chemical reactions, the temperature dependence
of folding reaction ratekf obeys5,12,13Arrhenius law which for
the folding time reads as

whereEa is the activation energy of the process andτ0 is the
fastest relaxation time corresponding to the limitT f ∞ (it is
assumed here and below that Boltzmann constantkB ) 1 and
is dimensionless). Arrhenius law determines a decrease ofτf

with temperature increase. However, in the case of folding,
further growth ofT leads to a deviation from the Arrhenius law,
and at a certainTopt folding time, τf reaches a minimal value
and its temperature dependence changes to the opposite
tendency1-10,12,13(see also Figure 1). It is widely held now that
this behavior is well-explained in the framework of the so-called
random energy model (REM). This model was initially intro-
duced by Derrida14,15 to describe statistical properties of spin
glasses. The essential idea of this model is the assumption that
the density of energy statesn(E) is given by the Gaussian
distribution

whereΩ is the normalization factor,Eh is a mean value andΣ2

is the standard variance of the energy for the REM Gaussian
energy distribution. Bryngelson and Wolyness in their pioneer-
ing work6 applied REM to the folding kinetics and later with
coauthors7 derived the temperature dependence of ln(τf) in the
form of a second order polynomial with respect to the reciprocal

temperature, widely to referred as “parabolic” dependence

whereE0 is the energy of the local minimum state. The key
result of the original REM is that at a certain temperatureTc )
Σ/x2lnΩ the entropy of the system vanishes. Thus, below this
temperature the system is frozen. This REM transition is widely
discussed in relation to the so-called heteropolymer freezing,
which is the transition from the phase where many conforma-
tions dominate at equilibrium to one in which only a few
conformations are statistically relevant. The REM ideology
provided substantial progress in understanding of folding
kinetics. However, there are many observations that are not
easily understood in the original REM paradigm.11,16 For
example, it is clear that the “parabolic” dependence in (3) does
not exhibit the Arrhenius limit in (1) at lower temperatures. To
resolve this contradiction, one can note6,7,8,13that belowTc the
“parabolic” formula is not valid due to the REM freezing
transition. Thus, one obtains aboveTc a “parabolic” like
temperature dependence ofτf while belowTc, using the mean
field replica theory,8 one derives an Arrehenius behavior of
folding time as follows

whereEc ) Eh - Σ x2lnΩ is the energy correspondent to the
REM “freezing” transition atTc. Nevertheless, the basic REM
assumptionsstatistical independence of the energies of states
over disordersseems violated for many cases, for example for
the proteins, and therefore, REM applicability is questionable.11

Nevertheless the generalizations of REM are still actively
discussed17 in relation to the folding kinetics and to the
interpretation of computer experiments which are simulating
folding kinetics of random amino acid sequences.13

The nonmonotonic temperature dependency of folding time
is also discussed from the point of view of a modified transition
state theory. In this case, as it shown by Oliveberg, Tan, and
Fersht,3,18 the changes in heat capacity for a biopolymer with a
hydrophobic core may also lead to non-Arrhenius folding
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kinetics. The reason for this is apparent negative activation
enthalpy occurring in the case when the heat capacities of the
transition state and denatured state are different.3,18

The presented work is an attempt to describe folding kinetics
of heteropolymers from an alternative point of view which is
based on the free volume concept. This concept was elaborated
by Fox and Flory to describe dynamic transition in poly-
styrene.19-21 The main idea of this concept is that the probability
to move a polymer molecule segment is related to the free
volume available in a system. Later the concept of free volume
was applied to the wider class of disordered solids by Doolittle22

and Turnbull and Cohen23 who suggested a similar relationship
between the viscosityη, the self-diffusion coefficientD, and
the free volume of an amorphous solid in the form

whereV0 is the volume of a molecule (a mobile unit) andVf is
the free volume per molecule (per mobile unit).

II. The Model
The folded conformation of a macromolecule is a state where

all the beads in the chain are connected to the proper, so-called

“native”, neighbors to minimize the total energy of the
conformation. Let us callpb the probability to break a bond
between the two neighboring beads andpn the probability to
find a native neighbor for a certain bond. Thus, if the chain
containsN beads and if each bead in the chain hasq bonds
then the total probabilitypf to convert this chain in the native
state is

wherepb
q is the probability to let allq bonds for every bead be

able to search for the native connection andpn
qN is the

probability to find the native contacts for allqN bonds. Let us
assume that to break one bond between two beads one need to
spend the energyEb. This means that the probabilitypb obeys
the law

Next, let us discuss the probabilitypn. Let us suppose that this
probability obeys the free volume concept. However, in contrast
to the original free volume concept eq 5, let us assume that this
probability is related not to the actual volume occupied by a
chain but to the relevant configuration volume in the space of
chain conformations. Thus

whereω0 is the number of chain conformations per bond and
ωf is the corresponding free volume in the configuration space.
This relationship simply express the idea that the probability to
find the “native” contact is bigger for greater values ofωf.
Obviously one should regardω0 as a constant which is equal
to ω0 ) Ω0/(qN), qN is total number of bonds to arrange and
Ω0 ) qN is the total size of the configuration volume. If a bond
is connected to a neighbor, not necessary “native”, then it is
excluded from the folding kinetics, and consequently, it does
not occupy any space in the configurational volume. Thus, the
free configuration volume per bond can be evaluated asωf )
Ω0/Nd, whereNd is the number of disconnected bonds which
are searching for the “native” connection. To calculateNd, let
us recall eq 7, which states that every bond has the energyEb.
Thus, the number of disconnected bond obeys the Boltzmann
law

and

Combining together eqs 6, 7, 8, and 10, one finds that the total
probability to convert a whole chain in the native state is

It is important to note here that besides assumptions 7 and 8
used to derive eq 11, it was implicitly assumed that all the
constituents of the macromolecular chain are equal; i.e., all of
them have the same number of bonds and all the bonds have
the same bonding energy. However, this cannot be the case for

Figure 1. Arrhenius plot presenting the dependencies of ln(τf) vs
reciprocal temperature. The symbols represent original data from ref
13 (panel A for sequence 1, panel B for sequence 4, and panel C for
sequence 8). The dash-dotted lines correspond to model 4. The full
lines correspond to model 12. The parameters of both models are listed
in Table 1.
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real heteropolymers. Thus, let us take this fact into account and
redefine thatEb andq are the averaged energy of a bond and
the averaged number of bonds per bead, which is not necessary
an integer. Thus, recalling the relationshipτf ∼ 1/pf one can
get the final expression

III. Comparison with Simulation Data

In the presented paper we are going to utilize the simulation
data borrowed from the previous paper.13 In this paper13 10
random amino acid sequences were investigated, however, only
three of them were analyzed in the frameworks of eq 4. These
are sequences 1, 4, and 8 (see Figure 1 and Figure 9 in ref 13).
In this case for model 4 the original fitting parameters from
previous work13 (see Figure 9 in ref 13) were used, while for
model 12 the fitting procedure was performed (see Table 1).

To establish a quantitative criteria of fitting goodness, one
can use24 the reducedø2 value

wherem is the number of points to fit,l is number of adjustable
parameters in a fitting model,yi are values of a given function
and fi are correspondent values of the fitting function. For all
analyzed sequences,m ) 16 (see ref 13). Model 4 has four
adjustable parameters: lnτ0, Ec, E* and 1/Tc. Since the number
of residues is fixedN ) 27 (see ref 13), model 12 has only
three adjustable parameters: lnτ0, Eb, andq.

IV. Results and Discussion

As one can see from Figure 1, model 4 reasonably fits the
data at the low-temperature region where the Arrhenius term
works, however, at the high-temperature region where the
“parabolic” REM term was applied, this model exhibits
significant deviation from the simulation data. In contrast, model
12 fits the data over the whole temperature range. From Table
1 one can see that values ofø2 for model 12 are about 1 order
of magnitude less than those for model 4. This clearly indicates
that model 12 is more relevant to the data presented in ref 13
than the model 4. Regarding model 12, note that the first time
it was introduced to describe the dielectric relaxation of water
molecules in a confined geometry25 and later was proved for
other systems.26,27This affirms the general importance of model
12 and shows that free volume arguments may be relevant not
only for the actual volume of a system but for the configurational
space as well.

From Table 1, one can observe that values ofEb for model
12 for all the analyzed random amino acid sequences are almost
the same. This means that for all sequences one needs to spend

roughly the same energy to break one bond between the beads
in the macromolecule chain. Thus, the only parameter which
affects the shape of the folding time temperature dependency
is the number of bonds per beadq. Using this parameter one
can estimate the number of contactsC between the beads in
the native conformation. Actually, in work13 the folding dynamic
was simulated with a three-dimensional lattice model. Thus, the
single bead can establish a maximum of four contacts to the
neighbors (six bonds per particle where two of them are
permanent connections in a macromolecule chain). Thus,C )
qN/4 which forN ) 27 andq from Table 1 givesC ) 22.7 for
sequence 1,C ) 18.4 for sequence 4, andC ) 22.9 for sequence
8. These estimated values are in fair agreement with theC values
obtained directly from simulationsC ) 22, C ) 18 andC )
21 for sequences 1, 4, and 8, respectivelly (see Table 1 in ref
13).

From eq 12 one can easily calculate the minimum in the
folding time temperature dependency and find the so-calledTopt

corresponding to the fastest folding time in the form

which givesTopt ≈ 0.15 for all analyzed sequences. Thus, with
eq 14, one can expect a logarithmic dependency of inverseTopt

on the sequence length.
Substitution of eq 14 into eq 12 gives the fastest folding time

where e= 2.718 is the base of the natural logarithm. Equation
15 represents a so-called algebraic scaling for folding times
discussed earlier.12,28-33 It can be derived from the idea of
Thirumalai28-30 that τfast should have an approximate power-
law dependence onN as in the case of the time scale for
subdivision in subspace of compact structures. Similar depend-
encies have also been discussed based on phenomenological
analysis of simulation results and experiential data.12,31-33

It is interesting to discuss eq 15 in relationship to the so-
called Levinthal paradox. This paradox was raised for the first
time by Cyrus Levinthal who mentioned34 the contradiction
between the astronomically large number of different possible
conformationsΩ0 and the quite fast folding time of real
macromolecules and biopolymers. Actually, if one implies that
a macromolecule reaches the native conformations by random
search over the entire configuration spaceΩ0 ) qN and tests
one conformation for timeτ0, then one immediately obtains that
folding the time exponentially grows with length of a macro-
moleculeτf ) τ0qN. There are many approaches to resolve this
contradiction including the idea of so-called “funnels” of the
energy landscape,1 a quite elegant consideration that the
processes uses to convert a correct bond into an incorrect one
and to convert an incorrect bond into a correct one may have
different probabilities,35 the idea of nucleation mechanism
leading to the so-called exponential scaling of folding times,36,37

the considerations about cooperative (all-or-none) character of
folding,38 and even the claims that it has never been a
paradox.39,40

In this regard, eq 15 suggests another point of view on the
Levinthal’s paradox based on the free volume concept and shows
that the fastest folding time may have a power law dependency
on N, which is much slower than the exponential growth
implemented by the random search. The key heuristic idea here
is since the total configuration space is constant the temperature

TABLE 1: Parameters of Models 4 and 12 Together with
the Reducedø2 Values

model presented by eq 4 model presented by eq 12

seq lnτ0 Ec E* 1/Tc ø2 ln τ0 Eb q ø2

1 4.20 -5.92 1.19 8.60 0.077-1.18 0.49 3.36 0.010
4 6.10 -6.32 0.99 8.04 0.016 1.84 0.50 2.73 0.008
8 3.04a -5.68 1.24 8.60 0.083-2.14 0.49 3.40 0.006

a The original paper13 reports a value of lnτ0 ) 3.4 for sequence 8.
However this value is not absolutely fitted to the data. Most probably
this value was misprinted. Substitution of lnτ0 ) 3.04 gives reasonable
agreement with the data as presented in Figure 1.
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increase leads to a decrease of relevant free configuration
volume as presented by eq 10.
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